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ABSTRACT

RETHINKING TIMESTAMPING: TIME STAMP COUNTER DESIGN FOR

VIRTUALIZED ENVIRONMENT

by

Alexander Tabatadze

Almost every processor supports Time Stamp Counter (TSC), which is a hardware register

that increments its value every clock cycle. Due to its high resolution and accessibility, TSC

is now widely used for a variety tasks that need time measurements such as wall clock, code

benchmarking, or metering hardware usage for account billing.

However, if not carefully configured and interpreted, TSC-based time measurements can

yield inaccurate readings. For instance, modern CPU may dynamically change its frequency

or enter into low-power states. Also, time spent on scheduling events, system calls, page

faults, etc. should be correctly accounted for. Even more complications arise when TSC

measurements are done in virtual environments; virtual machines, on which TSC readings

are taken, can be suspended, migrated, and scheduled on a machine with different clock rate

and performance. In production virtualization systems, some management tasks are executed

inside guests on behalf of the management system, effectively consuming end-user’s CPU time,

which we believe should be excluded from end-user billing.

We argue that the main problem with current TSC is that its hardware semantic is too

vague to serve as a multi-purpose time source. In this thesis, we propose an improved TSC
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design, called Caviar, to address most of the issues. Caviar extends existing TSC hardware

interface by adding a control-register based configuration interface through which a system

can set up secondary TSCs whose behavior should be correct when accessed in a localized

execution context including virtualized environment.

We experimentally confirmed inaccurate readings with current TSC by conducting a series

of TSC measurements on various x86 platforms, including virtualized cloud computing servers.

We analyzed some of the results and argue that how our proposed solution can fix the problems.

In conclusion, we believe that the simple interface of Caviar can solve most of current TSC

complications, be implemented with minimal hardware cost, and be adopted easily by system

software.
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CHAPTER 1

INTRODUCTION

Timekeeping has been around for a long time. With society and technology progressing

on a constant rate so was the need for a more accurate timekeeping. Nowadays the needs for

timekeeping vary greatly, from simple stopwatches for the purpose of measuring how fast a

man can run an athletic course to different scientific tasks and researches like nuclear physics

where the results often have to be in a microseconds or nanoseconds. Timekeeping devices in

modern computers thus serves wide spectrum of important practical needs, such as keeping

real-time as accurate as possible, accounting for software execution time as detailed as possible,

and measuring how much CPU time a client has used in cloud as fairly as possible.

A convenient and popular CPU-based mechanism that allows software to measure time is

a Time Stamp Counter (TSC). TSC has been around for a while now and used frequently by

both system software and user-level applications. In PC, TSC is a 64-bit hardware counter

which increments every clock cycle. TSC is then easily accessed by a program directly ex-

ecuting an instruction called RDTSC (Read Timestamp Counter). The fact that RDTSC is an

instruction and TSC rate is pegged to CPU clock frequency makes using TSC for various

timekeeping purposes very attractive.

However, even though TSC mechanism allows very accessible low-level interface, certain

conditions are needed when TSC is to be used to solve practical timekeeping problems. In

cases of measuring wall-clock time — the real time elapsed between two events —, TSC could

1
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be easily utilized by taking two TSC readings at each event and dividing the difference with

CPU clock frequency. Of course, this works as long as the rate at which TSC increments

remains constant, and that TSC value hasn’t been “reset” between the events, both of which

may or may not be true in actual systems. In cases of measuring user clock cycles — the clock

cycles needed to execute a stretch of user code —, two TSCs could be read on before and on

after execution of the subject code. The difference of the readings then could be actual CPU

cycles spent by the code, as long as there is no interruption during the code execution, and

the frequency of CPU remains constant throughout. But these conditions are difficult to meet

in practice. In cases of measuring billable time — the amount of CPU time actually used

by a client of a shared system —, multiple TSC readings could be taken whenever the client

occupies the host machine and thus consumes CPU time. Billing system would then process

the readings to produce the time spent by the client, but the challenge is to attribute fairly

time spent by system-level events, such as demand paging. In conclusion, the easy interface of

current TSC belies the complications when it is used to solve practical timekeeping problems.

Moreover, the situation gets even more complicated when we consider hardware virtual-

ization such as VmWare, Hyper-V, Xen, etc. Does an RDTSC instruction executed inside a

guest virtual machine (VM) report a value that is real or virtualized? Does the TSC progress

even if the guest VM gets scheduled out? Should the cost of hypervisor-induced VM in-guest

paging (i.e., balooning) [14] be billed to client? If not, how do we distinguish operator-induced

paging events [15] from regular guest paging event so that we can account for the measure

time differently? Does the rate of TSC of a guest VM change when the guest VM migrates

to different physical machine running at different clock frequency? Does the TSC value take

on different value when the VM migrates? These are a few additional TSC-related questions

2
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that needs to be addressed if we are to take virtualization into consideration.

But, surprisingly, current TSC interface does not provide enough flexibility to solve each

of those problems. In addition, modern solutions solve a wide range of specific and unique

problems and do not provide the flexibility that is needed.

In this paper, we first examine the current issues caused by the gap between the simplistic

low-level TSC interface and the various timekeeping scenarios, and then propose a hardware

extension which can address most of the issues. We performed various measurements using

TSC on different computing platforms to confirm the unreliability and potential measurement

errors of using TSC. In addition, we discovered that many current production systems rely on

temporary fixes and inconsistent patchworks in order to address some of the issues.

To address these issues in a more fundamental way, we propose an improved version of

TSC hardware interface, which we call Caviar (Counter Augmented by Virtually Interposable

Adjustable Register). With Caviar, software can configure the behavior of TSC in a way that

is deemed to be correct by the software in that particular context. Software then can execute

RDTSCon the Caviar-enabled TSC to get correct TSC values all the time without having to

worry about possible background events such as faults, VM exits, or CPU frequency scaling.

Caviar is also designed with virtualization in mind – the interface makes it easy to virtualize

the Caviar behavior via recursive instantiation of Caviar register. The simple minimalist

interface of Caviar would be able to allow efficient, low-cost hardware implementation as well.

We subjected Caviar to a few usage scenarios of TSC-based time measurement under

various system configurations. In the cases where we need to measure wall-clock time, software

can reliably use Caviar-Master TSC to obtain TSC value that always runs at a constant fixed

rate. In the cases where we need to measure user clock-cycles spent by a stretch of a user-level

3
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code, one can use Caviar-Slave TSC, which is configured to suspend itself upon kernel entries

and to adjust rate during frequency scaling events. In the cases where we need to measure

billable time spent by a client, system can use Caviar-Slave TSC that is configured to include

not only the user-time of client, but also a part of system-time incurred, depending on the

agreed upon billing policy.

Contributions of this paper are as follows:

• Analysis of current TSC-based timekeeping mechanisms to assess practical reliability

• Proposal of new hardware interface that enables correct and reliable software implemen-

tation

• Wide-ranging review of time measurement issues on modern computer systems.

In many critical systems issues, a deficiency in hardware cannot be made up by software

alone. For example, the dual modes of operations by processor are needed to implement any

form of kernel protection and process isolation thereafter. The atomic instructions, such as

compare-and-swap, are essential to correct and efficient implementation of any form of thread

synchronization in shared-memory multi-core systems. In the same vein, we would like to

argue that TSC-based timekeeping mechanism needs to be provided by hardware in a more

systematic and reliable way. Our proposed hardware solution – Caviar – would be able to

solve most current TSC issues in a fundamental and elegant way.

The rest of the paper is organized as follows. In Section 2, we highlight the problems

of using TSC to measure time with an example. Section 3 analyzes why seemingly simple

and innocuous TSC can fail to provide reliable outcome by analyzing different intentions that

programs may have when measuring time using TSC. Section 4 proposes our hardware solution

4
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– Caviar – that could address deficiencies in existing TSC. In Section 5, we revisit our previous

examples using Caviar this time in order to demonstrate that Caviar can eliminate vagueness

and unreliability. Section 6 provides experimental evidence of the deficiencies of current

TSC. In Section 7, we provide extensive review on timekeeping hardware, TSC, system time

accounting on both traditional and virtualized system platforms. Section 8 provides related

works, and we conclude in Section 9.

5
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CHAPTER 2

BACKGROUND

In this section, we first review time measurement mechanism in modern computer system

and then examine measurement issues when a program uses such mechanism to measure time

intervals or CPU time consumption.

Hardware timers and virtualization support are CPU features you can find in modern

computing systems such as x86 [3]. System software — operating system (OS) and virtual

machine monitor (VMM) — utilizes these features to efficiently share hardware resources and

accurately measure usage of such shared resources. Operating systems share limited amount

of hardware resources to multiple processes, each of which may belong to different end-user

accounts. Usage statistics, such as how much CPU time a process has consumed, need to

be accurately collected. Machine virtualization takes this resource sharing a step further

by allowing multiple operating systems on a single hardware. Virtualization is popular in

cloud computing because a hosting company can flexibly assign multiple virtual machines to

smaller number of physical machines, thereby reducing costs, even if the hosting company

sells computation assets on a per-machine basis to which customers can install any operating

system. Therefore, it is even more important in a virtualized environment to collect accurate

hardware usage statistics in order not only to meet service level agreement, but also to ensure

billing correctness.

The most popular hardware timer is based on Time Stamp Counter (TSC), which is a

6
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CPU internal register that counts the number of clock cycles the CPU has made since the last

reset. In x86, TSC is a 64-bit register whose content can be read by executing an instruction

called RDTSC (Read Time Stamp Counter). A program can simply execute RDTSC instructions

at certain events of interest to capture TSC values when these events occurred. By comparing

captured timestamps, the program may deduce passage of real time or how much CPU clock

cycles has been spent between events. Although there has been other hardware timekeeping

mechanisms that predate TSC, due to TSC’s extremely high resolution and accessibility, many

OSes and systems libraries have moved to use TSC as there source for timekeeping.

The description on TSC presented above is accurate, but the actual reality of timekeeping

hardware is very complicated with a long, convoluted history. We defer detailed exposition of

timekeeping hardware to the later part of this paper at Section 7.

The very fact that user-level program can obtain timestamps at nanosecond resolution

without calling into a system library or underlying operating system is indeed a huge ad-

vantage, and one may measure the “time” spent by a piece of code by simply executing two

RDTSCs, as shown in Figure 2.1.

In the figure, we are explicitly using RDTSC instruction to probe TSC directly instead of

invoking system calls to kernel, further improving accuracy and resolution of the measurement

itself. The difference of timestamp values would then simply be the clock cycles spent by this

processor during the execution of the code.

There is nothing special in the code above and the sequence of measurements is simple,

but let us take a closer look at what the measured clock cycle number (clk elapsed) can

actually represents:

1. Is it the wall-clock time? That is, if we divide clk elapsed by CPU’s nominal clock

7
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1 inline uint64_t rdtsc() {

2 unsigned int lo, hi;

3 __asm__ __volatile__("rdtscp" : "=a" (lo), "=d" (hi));

4 return (( uint64_t)hi << 32) | lo;

5 }

6
7 void clk_measure ()

8 {

9 uint64_t tsc_before , tsc_after , clk_elapsed;

10
11 tsc_before = rdtsc ();

12 do_some_computation ();

13 tsc_after = rdtsc ();

14
15 clk_elapsed = tsc_after - tsc_before;

16 printf("Computation duration: %lld \n", clk_elapsed);

17 }

Figure 2.1: Example of using TSC to measure clock cycles during the execution of a code.

rating (e.g., 4.0 GHz), are we then going to get the actual real-time elapsed?

2. Is it the CPU cycles consumed by the stretch of the user code? That is, can we use

this method of clock measurement to reliably “benchmark” the performance of the user

code?

3. Is it a fair measure of CPU usage by which a customer should be billed? That is, can one

use this method to reliably account for CPU usage in multi-tenant systems including

virtual machine based hosting service?

Careful examination quickly reveals that in order to be able to answer any of these ques-

tions, there are assumptions to be made on how exactly TSC hardware behaves and how the

underlying system software treats TSC progressions upon entering kernel, as well as upon

scheduling events.

Answer to question 1 can only be true if the hardware holds the TSC clock rate constant

throughout regardless of CPU frequency scaling or power mode (i.e., C state) change, and the

8
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system software should never pause, reset, or manipulate TSC 1 regardless of privilege mode

or what process the CPU happens to execute at any given time. Hence, the above is required

for hardware and system software if one wants to use TSC as a reliable source of wall-clock

time or real time measurement. A stopwatch program that has to measure the passage of

real-time, or a user time-out routine in an interactive application are examples that require

such TSC behavior.

In contrast, however, answer to question 2 can only be true if the hardware may vary TSC

clock rate when CPU undergoes frequency scaling or power state change, and system software

pauses TSC advancement upon entry to kernel or when the program is being scheduled out.

If these requirements are not met, any user measurement of CPU consumption of user code,

as shown in Figure 2.1, has a non-zero chance of incorrect readings. When we allow CPU

frequency to vary while TSC frequency remains constant, we may likely consider the measured

cycles not precise. A worse cases of incorrect readings can happen when the user process gets

interrupted or scheduled out in the middle of the execution. If such interruption happens and

TSC keeps counting, then the measured clock cycles include not only the time spent by the

kernel path but also the time spent by some other programs or I/O wait. Hence, should a

program want to measure the amount of CPU consumption by a piece of code, then TSC must

support aforementioned requirement, which is different from the requirement needed when we

need to measure wall-clock time.

Lastly, answer to question 3 can only be true if TSC advances in kernel mode only when

the kernel is entered in order to service the direct needs of the user process. In addition, if the

1Exception to this rule is when the CPU synchronizes TSC to external wall-clock time
source.

9
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Figure 2.2: Results of measurements in system with no load using the code provided in figure
2.1

hardware is a virtual machine, TSC should advance only when the virtual machine is sched-

uled on a physical machine, and the rate at which TSC advances should reflect the relative

performance differences when the virtual machine migrates to different physical machine with

different performance.

Therefore, correct interpretation of TSC measurement could only be done with under-

standing of systems configuration under which the measurements are taken. When a system

executes a program, most operating systems allocates resources

Based on the code provided in figure 2.1 we conducted an experiment in order see how

severely those issues affect the overall accuracy of readings.

As we see on the figure 2.2 in a system with no load at all, the results of a measurement

are not fluctuating as much, this is because the system is not performing any other unrelated

tasks and the probability of scheduling events or system calls occurring is very small.

10
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Figure 2.3: Measurements in a system under heavy load using the code provided in figure 2.1

The test on figure 2.3 on the other hand was conducted in a system that is under heavy

load and as we see from the results, the fluctuations of reading are all over the place. This

kind of scenarios can easily occur in a virtual environment, as one physical machine can be

used for hundreds different users each utilizing a chunk of the systems computing power. Thus

making the system execute and schedule hundreds of different processes that can impact the

measurements of a single user.

Virtual Machine Monitor (VMM) is a software program that allows creation, management

and governance of Virtual Machines (VM) and manages the operation of a virtualized environ-

ment on top of a physical host machine. VMM is the primary software behind virtualization

environments, VMM controls the creation of VMs, each with their own operating system,

resource allocation, and other input/output (I/O) resources.

As we have shown, despite its simplicity, TSC-based time measurement can lead to in-

11
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accurate readings depending on the end purpose of the measurement. We argue that the

“inaccuracy” actually comes from the gap between what TSC can provide and how TSC read-

ings are used in actual end-use cases. In fact, we also believe that current TSC hardware

interface provides inadequate support to meet various end purposes when clock-counting is

required. To better understand the gap, we discuss in Chapter 3 how TSC should act de-

pending on the various clock-counting use cases. Then in Chapter 4, we provide our enhanced

TSC mechanism, called Caviar, that addresses these needs.

12
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CHAPTER 3

TSC USAGE FOR DIFFERENT NEEDS

Continuing the discussion risen in the previous section, each of the asked questions come

with a specific set of needs, and each of them require a unique approach.

Wall-clock measurements

One of the needs is to measure wall-clock time in seconds, milliseconds, microseconds,

nanoseconds etc. For that purpose the expected TSC measurements should be accurate enough

as long as a constant rate TSC is used and the exact frequency of the processor is known. Even

if a more accurate result is needed on a lower resolutions like microseconds or nanoseconds.

CPU performance measurements

Another need that may arise is measuring the actual clock cycles spent by user code for

the purpose of profiling the code performance or behaviour. For that purpose the expected

behaviour of TSC should depend on what specific needs does the user have towards perfor-

mance measuring. In some cases the measurement might include any interrupts, scheduling

events that had occurred during the measurement if it has to be a part of the measurement,

but in most cases, system executions that run outside the user code are bottlenecks that need

to be excluded from the final results, so the TSC should be able to stop the counting process

while those processes are executing and then resume counting to deliver accurate results on

13
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user code execution.

CPU usage measurements for billing purposes

In some cases it is necessary to measure the CPU time spent by the user for billing purposes,

so the user will pay exactly the amount that the CPU spent performing user related tasks.

So everything that happens outside user related tasks should be excluded from the overall

measurement process. Achieving that could be complicated especially in virtual environments.

While performing some user related tasks the VM can unexpectedly migrate, causing migration

issues for timekeeping, in that case the system needs to perform an Automatic Scaling process

if the new hardware that the VM had migrated to runs faster or slower than the original one

for the timer to show accurate results or the migration process can be halted while the user

is performing some tasks. As with the previous need any unrelated system call or scheduling

event that has occurred outside user related tasks should be excluded from the final result,

but if any of those processes are invoked by the user, then they should be included in the

bill as they perform user related tasks. As an example VMMs often allocate memory using

the ”ballooning” technique. Virtual memory ballooning is a computer memory reclamation

technique used by a hypervisor to allow the physical host system to retrieve unused memory

from certain guest VMs and share it with others. In that case if the virtual system has

generated a page fault as a consequence of ballooning it should not be included in the final

bill, but if there was a system interrupt generated by the user to request additional memory

for some tasks that the user performs, then it should be billed.
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CHAPTER 4

HARDWARE PROPOSED SOLUTION

For different use cases described in the previous section there should be a unique solution

to each of the issues that occur during the usage of the TSC.

The way that the ”CAVIAR” system works is that it has multiple secondary TSCs each

linked to a TSC Control module that is responsible for deciding when should the secondary

TSC stop or start counting. It does that by receiving commands from the system that flip

the bits inside the control module that represent different scenarios of TSC usage as well as

different issues that can impact the measurement. After receiving the command based on the

use case it enables or disables the counting process of the secondary TSC.

There are not many issues linked with wall-clock time measurements, unless there is a

need to be precise with when working with microseconds or nanoseconds. So in order to

be accurate and consistent there needs to be a Primary TSC that behaves like a traditional

constant rate TSC. That way we will get accurate and consistent results measuring or timing

wall-clock time. In Virtual Environments, when performing the same tasks and faced with

migration problems the resulting values should be exactly scaled based on exact frequency of

the processor.

Based on the figure represented above 4.1 the solution to further needs can be provided.

For the purpose of measuring the clock cycles spent by user code for performance monitor-

ing or benchmarking the proposed solution is able to stop the TSC from counting in certain
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Figure 4.1: Sketch of Hardware proposed Solution

situations. If any interrupts arise, or any scheduling event is present that can impact the

resulting measurement, one of the bits in the TSC Control Module is flipped in order to save

the current state of TSC in Cache/Memory. After everything is clear and user code is able to

resume its execution, the bit is flipped back in order to continue counting. Not only that, but

the flexibility of the TSC Control Module may insure accurate and consistent results without

any fluctuations. That way any measurement is ensured to reflect the exact time spent on

code execution.

The same may be applied for billing purposes but with minor modifications in order to

meet certain requirements. When any interrupts or scheduling takes place and the one causing

it is the system itself, then the timer has flipped bits that stops counting for the time being.

But if any interrupts or page faults are caused by the user as a result of code execution or

something else, then the timer should continue counting for this to appear in the final bill.

16



www.manaraa.com

CHAPTER 5

USAGE OVER HARDWARE PROPOSED SOLUTION

Usage cases of the proposed hardware solution are many.

1 int main()

2 {

3 clock t1 , t2;

4 t1 = tsc_wc.now();

5
6 Sample_project_execution ();

7
8 t2 = tsc_wc.now();

9 Wall_clock_time_elapsed = t2 - t1;

10 cout << Wall_clock_time_elapsed;

11 }

Figure 5.1: Caviar usage for wall-clock time

In listing 5.1 some user function ”Sample project execution” is being timed by using the

improved wall-clock time functions. By timing the execution using the provided method, the

results are consistent and accurate for the designated task.

1 int main()

2 {

3 pin_this_vm ();

4 clock t1 , t2;

5 t1 = tsc_cycle.now();

6
7 Sample_project_execution ();

8
9 t2 = tsc_cycle.now();

10 Cycle_spent_by_user_code = t2 - t1;

11 cout << Cycle_spent_by_user_code;

12 }

Figure 5.2: Caviar usage for CPU cycle counting
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In listing 5.2 the same function ”Sample project execution” is being executed by the user,

and this time it is necessary to know the amount of clock cycles that have passed while

executing relevant code only. first of all it is necessary to pin the Guest Virtual Machine to

avoid unnecessary migrations that could cause problems by forcing the system to scale the

results of counting on one frequency, to match the same results on another frequency. The

tsc cycle.now() function starts and ends the timing process, it also creates a background

process that monitors any interruptions that could potentially harm the final results of the

measurement.

1 int main()

2 {

3 pin_this_vm ();

4 clock t1 , t2;

5 t1 = tsc_billing.now();

6
7 Sample_project_execution ();

8
9 t2 = tsc_billing.now();

10 Billed_time = t2 - t1;

11 cout << Billed_time;

12 }

Figure 5.3: Caviar usage billing

In listing 5.3 the process of measurement is the same as in the previous one, but the

tsc billing.now() creates a background process that acts as a controller. The purpose of

this function is to stop counting whenever there is an interruption from the system side and

resume or continue the counting process when interruption is caused by some user related

actions, whether it is code related executions, or system call related interrupt that is related

to user code.
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CHAPTER 6

EXPERIMENTAL RESULT

In this section we will see how does the Time Stamp Counter performs in different condi-

tions.

The conducted experiments were based on the code that was used previously in Section 2

illustrated in figure 2.1. In order to achieve the most accurate results, no libraries were used,

to exclude the possibility of receiving unnecessary time spent on certain library executions.

Therefore The ”rdtsc” instruction used in the code, was written as an inline assembly code.

The user function was written in such way, that it could be modified to execute the same

amount of computations over a certain period of time, that period is configurable by the user.

Based on that, the first experiment that was conducted included a simple execution of the

code with an expected measurement of each iteration of 23ms in an environment without any

load. That means that the system was not performing any heavy computational tasks, and

the processors had been in an idle state. As we see from the figure 6.1 the results seem mostly

stable in such an environment. The initial high results of the first iteration indicate the ”cold

start” of a program, meaning that at that start of a process, memory has to allocated for that

execution as well as the CPU itself has to get out of the idle state in order to start performing

this task.

In the next figure 6.2 everything staid the same, but now the system is under heavy load.

This can occur while a machine is running several VMs at the same time and each of them are

19



www.manaraa.com

Figure 6.1: Measurements in a system without any load, expected runtime per iteration 23ms.
X-axis - Spent time on 1 iteration, Y-axis - Number of iterations

performing some computations, using up processing power of the CPU. Or it can also occur

in a non virtualized system, when the system is loaded with the complex computations of the

code itself. As we see from the results, the difference between the two are apparent. Each

spike represents a scheduling event or a paging fault. in order to clearly see and distinguish

between them, we need to perform the same experiment but faster.

The second experiment was conducted using the same code but modified to run faster

in order to clearly see and distinguish between different spikes and what caused them. The

expected results from each iteration were 2.2ms. In figure 6.3 we can clearly distinguish the

”cold start” after which the results smooth out and continue to be consistent throughout the

test. However it does not exclude a possibility of a scheduling event occurring if this code

were to run for a longer period of time.

In the following figure 6.4 the experiment was run with the same 2.2ms expectation but

this time the system was under heavy load. As we see the resulting spikes that are caused by
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Figure 6.2: Measurements in a system under heavy load, expected runtime per iteration 23ms.
X-axis - Spent time on 1 iteration, Y-axis - Number of iteration

Figure 6.3: Measurements in a system without any load, expected runtime per iteration 2.2ms.
X-axis - Spent time on 1 iteration, Y-axis - Number of iteration

scheduling events and paging faults, are seen more clearly, but it is still hard to distinguish

which spike is caused by what process. So the next step and the next experiment should be

executed even faster so that each iteration would measure less than 1ms. That way we will see

if an iteration took more than 1ms to execute, then we have a scheduling event, that usually

takes 1-2ms.

21



www.manaraa.com

Figure 6.4: Measurements in a system under heavy load, expected runtime per iteration 2.2ms.
X-axis - Spent time on 1 iteration, Y-axis - Number of iteration

Following the said above the third experiment was conducted with the same code executing

even faster, with an expected run time of each iteration of 0.6ms. As seen in figure 6.5 apart

from the ”cold start” we can now see that with some executions the frequency of the CPU

was throttling for a short period of time that was smoothed out as it went on.

Figure 6.5: Measurements in a system without any load, expected runtime per iteration 0.6ms.
X-axis - Spent time on 1 iteration, Y-axis - Number of iteration
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In figure 6.6 we can now clearly distinguish each spike that occurred during this experiment

and link each of them to different issues that caused them.

Figure 6.6: Measurements in a system under heavy load, expected runtime per iteration 0.6ms.
X-axis - Spent time on 1 iteration, Y-axis - Number of iteration

After these experiments it has become apparent that the results of TSC are very incon-

sistent and not accurate especially if a system is loaded with different complex executions

or processes. But those executions were only in a bare metal system where we have control

over the environment in which we measure time. What will happen if we perform the same

measurement but in a virtualized environment?

In figure 6.7 are the results of a measurement on an Amazon EC2 Server. The code that

was executed is the same as the one executed in the bare metal system and the frequency of

the processor in the Amazon machine is also the same as the one in the bare metal experiment.

As we can clearly see, when measuring something in virtual environment the stability that we

seen in previous experiment is no more. These are the results of system without any load.
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Figure 6.7: Measurements on an Amazon EC2 Server without any load, expected runtime per
iteration 0.6ms. X-axis - Spent time on 1 iteration, Y-axis - Number of iteration

The results presented in figure 6.8 are from a virtual environment that is under heavy

load. As we can clearly see, the results are all over the place and there is no was to extract

any accurate data from such measurements.

Figure 6.8: Measurements on an Amazon EC2 Server under heavy load, expected runtime per
iteration 0.6ms. X-axis - Spent time on 1 iteration, Y-axis - Number of iteration
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CHAPTER 7

SURVEY OF TIME MEASUREMENTS AND TSC

This Chapter is dedicated to the background overview of Hardware, Timers and Virtual

Machines.

Hardware Timers

There are several timekeeping hardware sources in a typical x86/PC system, but user

applications rarely use them directly. Instead, they typically use system API that is part

of operating system system call or run time library routine that comes with programming

language. This is because most timekeeping hardware is treated as I/O devices, access to

which is privileged. Operating system therefore manages the hardware and then provides

user a set of abstract timer/alarm operations via system call interface. However, one glaring

exception to this privileged nature of timekeeping hardware is CPU timestamp counter (TSC),

which, in many cases, is allowed to be accessed directly by user application via execution of

a single machine instruction. The Operating System (OS) itself also needs to know the time

and have the ability to measure it for scheduling the work of user threads, accounting for the

resources consumed by them, performance profiling, power management, etc. At the same

time the OS works directly with the interfaces that are presented by devices. As there are a

lot of different timers modern OS can select, one “central” device is used in the beginning of

the loading process. Time Stamp Counter (TSC) is based on the idea of using the processors
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clock as the source of time. The TSC register in processor core stores the current clock number

counted from system boot. To read this register, a program can just execute an instruction

(i.e., RDTSC). Depending on system configuration, this instruction can be used directly by

user-level programs without raising a fault. As TSC can provide both high resolution and

convenience, programs may use TSC at runtime to quickly measure the time spent during the

execution of a small segment of code. Despite the utility of TSC, the development of PC’s

TSC hasn’t been smooth. Originally a TSC was created with each logical processor and it was

a good way to get CPU timing information. But with the creation of multi-core processors and

the technology that it brought with it, for example the simple hibernation, the TSC cannot

be relied upon to provide accurate results. If, for example, a program needs to measure time

with TSC in a multi-core system, the TSC counters need not only to be synchronized but

also to equalize tick rates of all the cores. In virtual environments, TSC can be virtualized.

The virtual TSC falls behind when there is a backlog of timer interrupts and catches up as

it clears. The virtual TSC does not count the virtual CPU cycles it continues even when the

guest operating system is turned off, so the guest TSC values do not match the host TSC

values. One reason why that is happening is that when the guest operating system first been

installed on a host system, the TSC values are identical, but if that guest would have been

moved to a different system the original TSC values stay and if the new host system has a

different CPU speed from the previous one there bound to be mismatches in TSC values along

the way.
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Different Kinds of TSC

There are several types of TSC, each of which can roughly be distinguished by different

instruction defined.

Read Time Stamp Counter (RDTSC) is the original PC TSC instruction, first appeared in

Intel Pentium in 2003. Upon execution, the current 64-bit counter value – the clock cycles

counted from the last time of a power disconnection or a reboot – is stored in a pair of

registers (EDX:EAX). Unlike other timekeeping hardware devices whose access is privileged,

RDTSC instruction can, by default, be executed on any level of privileges. The OS of course

can disable the RDTSC in user mode. In such case, an exception is raised if user code executes

RDTSC. The same TSC counter is exposed as Model-Specific-Register (MSR) interface, which

allows privileged code to read/write TSC value. To update the TSC counter, an operating

system can therefore execute WRMSR (write to MSR) instruction, specifying new TSC value.

Being an instruction, RDTSC is originally subjected to instruction reordering found in most

modern out-or-order micro architecture. Hence, care must be taken if one wants to obtain

TSC with instruction level precision. One way to enforce program order is to execute memory

barrier (serializing instruction) along with the RDTSCP. Reading the TSC is a single instruction

and on real hardware it’s very fast, but in a virtual machine, that instruction faces a lot of

overhead, and thus runs slower resulting in false readings.

Read Time Stamp Counter and Processor ID (RDTSCP) is an upgrade of RDTSC and is now

supported in all recent x86 systems. Out of order execution is when a processor can execute

system instructions in an order that is different from the order that is written in the program

code. This means that the RDTSC execution can be halted or on the contrary executed faster

than expected. So it means that RDTSC cannot reliably measure the part of the executable code

27



www.manaraa.com

as a result there are no guarantees of a monotonic readings. in the later computer architecture

RDTSCP was created, it is an instruction that partially serializes the flow of execution, so it

does not need additional barriers. It is not affected by power options of the processor. And

the multi-core problem that persisted in the RDTSC instruction, where it could not synchronize

the clock readings between different cores can also be handled by the RDTSCP instruction. In

order to deal with those problems RDTSCP has a single signal source and it can detect the

migration of the process between multiple cores.

Timers in Virtual Environment

Like the real system, the guest system can periodically access all of the devices that provide

the time: RTC, PIT, APIC timer, ACPI PM-timer, HPET, TSC. The first five of this list

are external to the CPU of the device, so the approaches to their virtualization are similar.

Work with peripheral devices is through the programming of their registers. The registers are

either available through the port space (PIO, programmable input / output), then IN/OUT

instructions are used, or at specified physical memory addresses (MMIO, memory-mapped

input / output), and then they are operated with ordinary MOV instructions. In both cases,

VT-x technology allows you to configure what will happen when you try to access devices

from within the VM - monitor output or ordinary access. In the first case, the tasks of the

monitor include emulation of interaction with the software model of the corresponding device,

exactly as it would be in purely software solutions that do not use hardware acceleration.

In this case, the processing time of each access can be greater than when accessing a real

device. However, almost always the frequency of calls to the registers of timers is small, so the

overhead of virtualization is reasonably small. In practice, there might be some exceptions
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- some operating systems, found in the HPET system, begin to read it often and persistent.

This causes a noticeable slowdown in the simulation. For example if a programmer wanted to

allow direct access to the timers, it would be rarely possible. Firstly, a real timer device can

already be used by the monitor for its own needs, and it is inadmissible to allow a guest to

interfere with the operation of the monitor. Secondly, one real timer can not be divided into

parts, and after all in one system there can be several VMs, and each one needs a copy of the

device.
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TSC Virtualization

Unlike other timer devices, this counter is located directly on the processor, and access to

it is through the instructions RDTSC, RDTSCP and RDMSR.

As with other timers, there are two approaches to TSC virtualization:

• Interception of all calls followed by pure software emulation.

• Permission to read the value directly based on the TSC in the guest.

In the Intel VT-x architecture, the RDTSC exiting bit of the VMCS control structure cor-

responds to the behavior of the RDTSC within the guest mode, and the RDTSCP behavior is

another bit, ”RDTSCP enable”. That is, both instructions (as well as RDMSR, interpreted

as a variant of RDTSC), can be intercepted and software emulated. This method is rather slow:

just reading TSC takes a dozen cycles, whereas a full cycle of going out of the monitor, emula-

tion and return is thousands of cycles. For a number of scenarios that do not use RDTSC often,

the effect of slowing down from emulation is invisible. However, other scenarios can try to

”learn the time” with RDTSC every few hundred instructions which, of course, leads to a slow-

down. In the case when the direct execution of the corresponding instructions for reading the

TSC is allowed, the monitor can set the offset of the return value relative to the real one using

the ”TSC offset” field of the VMCS and thereby compensate for the time during which each

guest was frozen. In this case, the guest will get the value of TSC plus TSC OFFSET.

Unfortunately, allowing direct execution of RDTSC has a lot of complications. One of them

is the the complexity of fixing the exact moment when the monitor finishes and the guest

starts – after all, the TSC “ticks” constantly, and the processes of transitions between the

processor modes are instantaneous and have an unknown variable duration. One way or the
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other, this difficulty introduces TSC uncertainty or errors that depend on particular VM

implementation. A certain border zone arises, for which it is not clear which“worlds” to

attribute to the measures carried out in it. As a result, it is very difficult to understand which

TSC values the guest could see, and this creates an error of several thousand clock cycles

per guest-monitor-guest switch over. Such a mistake can quickly accumulate and manifest

in a very strange way. In fact, for normal implementation, there is not enough “atomically-

instantaneous” exchange of the TSC values of the guest and the host.

The second problem is essential for VM monitors in cloud environments. Although with

TSC-OFFSET we can set the initial value for TSC when entering guest mode, the rate of

TSC change after that, can not be changed. This will create problems when the guest OS

is hotly migrated from one host machine to another with a different TSC frequency. Since

timer calibration is usually performed only on initial boot, after such a move, the guest OS

will not correctly schedule events. As a result, we can say that the current state of hardware

accelerated virtualization technology does not contain methods for efficient virtualization of

the TSC counter. Or reality in one way or another ”squeezes” into a virtual environment,

or everything works very slowly. Of course, not all applications are so sensitive as to break

down inside a guest with direct execution of RDTSCP. Especially if you write programs so

that they take into account the possibility of running inside the simulator. And yet many

virtualization solutions have moved to using TSC software emulation by default - although it

is slower, but more reliable. The user must enable the direct execution mode himself if TSC

creates performance problems, and if he is willing to investigate strange incidents associated

with other times in his scenarios.
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Current state of TSC-based measurement

The current approaches of solving the named above problems vary in rage from simple to

very complicated and as practice shows the simpler ones do not provide the full scale solution

to the desired problems. Some users experience difficulty in setting up a custom timer every

time they need to measure time on a different task as each problem needs to be approached

uniquely. So as a result the user sacrifices accuracy and consistency of measurements and

presents an average result, validity of which he can not approve nor deny. That validity is

solely dependant on the system it has been run on. More complicated solutions create even

more bottlenecks for themselves as the more complicated the solution is the more system calls

and functions it will have to call in order to execute itself. Thus creating an even bigger margin

for inaccuracy to take place as it will potentially raise even more exceptions and invoke even

more system calls that will impact the resulting measurement.

32



www.manaraa.com

CHAPTER 8

RELATED WORKS

The evolution of Time Stamp Counter (TSC) has been dictated by changes in x86 instruc-

tion set architecture [3]. The very first implementation of x86 TSC was just a clock cycle

counter; architecturally, TSC was supposed to count the cycles, so if processor changes its

operating frequency, the rate of TSC also changes. Soon, there was increasing demand that

TSC to be operating at constant frequency, which is necessary if TSC is to replace conven-

tional wall-clock timer, so the semantics of x86 TSC changed in such a way that TSC always

operates at the nominal frequency. At the same time, people begun to use TSC to profile

code performance. The original RDTSC instruction was not serializing, meaning that CPU

can reorder instructions around RDTSC. This meant RDTSC lacks precision when used for

code profiling, so x86 added a serializing version of the instruction called RDTSCP. As x86

virtualization became mainstream in mid-2000, x86 architecture gradually added hardware

support for virtualization such as VT-x. However, with virtualization, maintaining TSC se-

mantics in virtualized environment became an issue [1]. A few fixes in x86 have then been

added to address virtual machine migration, such as TSC offsetting and scaling, as part of

VT-x specific features [3, 4]. Our proposed TSC solution is more generic and flexible, so if

adopted, it will streamline x86 TSC measurement in both bare-metal systems and virtualized

systems.

Hardware virtualization has a long history with its root on IBM VM370 in the late 60s.

33



www.manaraa.com

However, x86 virtualization has become mainstream in early 2000 when VMware first success-

fully commercialized x86 hardware [11, 14]. The emergence of x86/PC based virtualization

was also fueled by Xen hypervisor [2], which was developed open-source. Xen then became

one of the important virtualization kernel in the industry, currently serving as the hypervisor

of Amazon’s EC2 cloud. Timekeeping in virtualization has been an issue, but it has so far

been dealt with in-house solutions specific to individual virtualization [1, 10], partly due to

the lack of consistent hardware TSC behaviour.

Descendants of UNIX operating system, such as Linux, keeps three different per-process

CPU usage time: real-time, user-time, and sys-time. Real-time measures the wall-clock time

passed since the process has launched. User-time measures the CPU time when the process

has been actually executing in the user-mode. Sys-time measures the CPU time the process

spent in the kernel-mode, excluding I/O wait. Operating system kernel measures these metrics

using hardware time source, such as TSC. However, when a system is running in a virtualized

environment, these measures can become unreliable. Also, these metrics do not accurately

account for special types of CPU usage such as fast I/O operations done in synchronous

fashion [16, 17] or involve lengthy in-kernel computations such as memory compression [15].

In many cases, users can only perform time measurement in-context in the user-level. Our

proposed solution can be applied to address CPU accounting problem in these modern systems,

producing more detailed usage statistics.

Time synchronization has been an important domain of research in computing as well

as in networking. Invention of Lamport clock [6] is considered as one of the foundation of

distributed computing. In the field of computer networking, numerous technical articles,

specifications, and protocols have been produced. For example, Tian et. al [12] is a recent
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example in which time synchronization issues in networking has been investigated. Although

time synchronization is an important issue, it is not directly related to our work. If hardware

TSC needs to synchronize with external clock, the system can use existing synchronization

algorithms.

Early works on high-resolution hardware timer includes research of Ong textitet. al. [8].

In it, they presented a high resolution performance monitoring software on the Pentium.
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CHAPTER 9

CONCLUSION

To support the Time Stamp Counter usage for different purposes like: wall-clock time,

Benchmarking and billing, we have presented a solution named “Caviar” that has multiple

secondary TSC that are controlled by the TSC Control Module, that allows the timer to start

or stop the counting process as opposed to a traditional TSC that does not have the ability

to do so. We have also confirmed through tests, that the fluctuations of measurements when

using a traditional TSC are indeed impacting the accuracy and consistency of the results. As

a result, this solution offers a more reliable and stable way to measure time in different and

unique situations by eliminating the possibility of any system related activity to be counted

towards the final result of a reading. For users with the need for accurate time measurements

this solution will provide them with easy and flexible system to use, without the need to set

up an external hardware and without the need of global satellite time synchronization that

can be very costly.

In future work, our solution needs to be physically implemented in a live system to ensure

the ability to properly work under said circumstances. After that this solutions needs to be

implemented as a part of modern system architecture, for everyone to use.
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